TAGGING CO₂ TO ENABLE QUANTITATIVE INVENTORIES OF GEOLOGICAL CARBON STORAGE DOE AWARD #DE-FE0001535

Cantwell Carson The Earth Institute Columbia University

Lenfest Center for Sustainable Energy EARTH INSTITUTE | COLUMBIA UNIVERSITY U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO₂ Storage August 21-23, 2012

Presentation Outline

- Benefit to the program
- Project overview: Why ¹⁴C for MVA?
- Technical status: Cartridges, injections, lasers
- Summary
- Organizational chart
- Collaborators

Benefit to the Program

 Develop technologies to demonstrate that 99 percent of injected CO₂ remains in the injection zones.

Permanent storage of CO_2 can be demonstrated by adding carbon-14 (¹⁴C) prior to injection. This research project aims to demonstrate this by tagging fossil CO_2 with ¹⁴C at a field site. When completed, this system will show that ¹⁴C can be a safe and effective tracer for sequestered CO_2 . A laser-based ¹⁴C measurement method is being adapted for continuous monitoring. This technology contributes to the Carbon Storage Program's effort of ensuring 99 percent CO_2 storage permanence in the injection zone(s) (Goal).

- Project Overview: Why use ¹⁴C in MVA?
- Radiocarbon, or ¹⁴C :
 - Long half-life radio isotope: $\tau_{1/2}$ =5730 years
 - Produced naturally by cosmic radiation
 - Made artificially by neutron capture
 - Ambient concentration: ${}^{14}C/{}^{12}C \approx 10^{-12}$
 - Concentration in fossil fuels: ${}^{14}C/{}^{12}C < 10^{-14}$
- Fossil-based CO₂ has ~100x less ¹⁴C than natural (biogenic) CO₂
- ¹⁴CO₂ is chemically identical to ¹²CO₂ and can indicate fixation

- Tag intended at \approx 1 part per trillion
 - This limits subsurface concentration to ambient levels
 - Makes fossil based CO₂ look like bio-based CO₂
 - Requires 1 g ¹⁴CO₂ per million ton CO₂
- 1-day tag limits liability in the event of accidental release

- ¹⁴C filling station
 - Membrane-based gas/water solution apparatus
 - Produced CO₂-water solutions
 - Produced calibrated SF_6 -CO₂-water tag cartridges

- Tagging very large stream with very small tag (1 in 10¹²)
 - 1 g ${}^{14}CO_2$ for 1 M ton CO2
- Needs to demonstrate accuracy and precision
- Potential injection into super critical or liquid CO₂
- Needs to be demonstrated at lab scale and in field test

- Bench-scale high-pressure flow loop
 - Turbulent flow regime

High pressure

pump

entest Cente

EARTH INSTITUTE

- Pressurized CO₂ flow loop to 1457 psi CO₂, 33 °C
- Injected SF₆ solution into super critical _ CO₂ at the 100 part-per-trillion level

Linearizing Regime

pump to

Return hose

 Test bed for future weathering experiments

- We need a method to monitor, record, and control injection on-line and in real time
- Verification and accounting necessary at injection
- Standard methods are not viable for this application:
 - Accelerator Mass Spectrometry is a batch method
 - Liquid Scintillation Counting is too slow
- Development of laser-based methods is required

- Development of ¹⁴CO₂ Detector
- IntraCavity OptoGalvanic Spectroscopy (ICOGS) can
 - Detect ¹⁴C at the part-per-trillion level
 - Be carried out on-line in real time
 - Be built for >\$100k
- We formed a partnership with researchers at Rutgers University to build and develop this detector

Development of ¹⁴CO₂ Detector

Development of ¹⁴CO₂ Detector

EARTH INSTITUTE | COLUMBIA UNIVERSITY

Lenfe

Murnick et al., Analyt. Chem. 2008

Development of ¹⁴CO₂ Detector

Lenfest Center for Sustainable Energy EARTH INSTITUTE | COLUMBIA UNIVERSITY

- Laser-based ¹⁴CO₂ detector
 - Assembled Intra-Cavity Opto-Galvanic Spectrometer (ICOGS)
 Redesigned glow discharge and detection circuit

- Laser-based ¹⁴CO₂ detector
 - Constructed new double flow-through cell

Lenfest Center for Sustainable Energy EARTH INSTITUTE | COLUMBIA UNIVERSITY

- Laser-based ¹⁴CO₂ detector
 - Measured separation of 100 pMC versus >0.1 pMC

- Key Findings
 - Gas-water solutions can be produced in µL volumes with high precision
 - SF_6 -CO₂-water solutions are suitable for tagging high-pressure CO₂
 - ¹⁴C can be detected in CO₂ by the ICOGS system
- Lessons Learned
 - ICOGS circuitry, sample handling, signal analysis still require substantial development to achieve full potential

Previous circuit board and one of the new layouts

- Future Plans
 - Improve ICOGS detector
 - Inject ¹⁴CO₂ into high-pressure flow loop
 - Inject ¹⁴CO₂ at CarbFix pilot injection site in Iceland
 - Demonstrate detection of ¹⁴CO₂ from samples taken at field site

Organizational Chart

Columbia University

Klaus Lackner, PI: Oversight and development of 14C-detector

Alissa Ah-Hyung Park, co-PI: Construction of high-pressure flow loop

Juerg Matter, co-PI: Field tests at CarbFix site in Iceland

Barnard College

Martin Stute, co-PI: Construction of 14C detector and filling station design

Cantwell Carson, postdoc: Construction of 14C detector

Yinghuang Ji, student: Construction of filling station, testing flow loop

Collaborators:

- Rutgers University:
 - Daniel Murnick
 - Mark DeGuzman
 - Tulu Bacha
 - Bill Thomas
- University of Groningen
 - Harro Meijer
 - Dipayan Paul
- Access Laser
 - Yong Zhang

Lenfest Center for Sustainable Energy EARTH INSTITUTE | COLUMBIA UNIVERSITY

Appendix

- Gantt Chart
- Bibliography

Gantt Chart

	Year 1									Year 2													
		Q1 Q2			Q3		Q4			Q1		Q2		Q3		Q4		Q5					
Tasks	Oct	Nov	Dec	Jan	Feb :	Mar	May	Jun	In	Aug	Sep	: oct	Nov	Jan	Feb	Mar	Apr	May	nn	ı۳,	Aug	oct Oct	Nov
Task 1.0 - Project Management, Planning, and Reporting																							
Subtask 1.1 Project Management Plan																							
Subtask 1.2 Reporting and Budgets																							
Subtask 1.3 Presentation and Briefings																							
Subtask 1.4 Final report																							
Task 2.0 - Design of the ¹⁴ C Supply Units and Microcartridge Systems for Tracer Injection																							
Subtask 2.1 Construction of a filling station																							
Subtask 2.2 Design and fabrication of a syringe system to hold dissolved tracer gas																							
Subtask 2.3 Design and fabrication of a microcartridge system to hold compressed tracer gas																							
Subtask 2.4 Optimization of selected injection system																							
Task 3.0 - Laboratory Scale Evaluation of Injection Systems																							
Subtask 3.1 Design and Construction of High Pressure Flow System for Mixing																							
Subtask 3.2 Testing Supply/Injection System with SF_6																							
Subtask 3.3 Testing Supply/Injection System with 14CO2																							
Task 4.0 - Development of ¹⁴ CO ₂ Detection System																							
Task 5.0 - Field Tests of Developed ¹⁴ CO ₂ Tagging Systems																							
Task 6.0 - Hazard and Environmental Analyses																							

		Year 3										
		Q1		Q2		Q3						
	Tasks	Jan Feh	Mar	Apr	May	nn	Inl	Aug	Sep	Oct	Nov	Dec
Task 1.0 - Project Management, Planning, and Reporting												
	Subtask 1.1 Project Management Plan											
	Subtask 1.2 Reporting and Budgets											
	Subtask 1.3 Presentation and Briefings											
	Subtask 1.4 Final report											
Task 2.0 - Design of the ¹⁴ C Supply Units and Microcartridge Systems for Tracer Injection												
	Subtask 2.1 Construction of a filling station											
	Subtask 2.2 Design and fabrication of a syringe system to hold dissolved tracer gas											
Subtask 2.3 Design and fabrication of a microcartridge system to hold compressed tracer gas												
	Subtask 2.4 Optimization of selected injection system											
Task 3.0 - Laboratory Scale Evaluation of Injection Systems												
	Subtask 3.1 Design and Construction of High Pressure Flow System for Mixing											
	Subtask 3.2 Testing Supply/Injection System with SF_6											
	Subtask 3.3 Testing Supply/Injection System with 14CO2											
Task 4.	Task 4.0 - Development of ¹⁴ CO ₂ Detection System											
Task 5.0 - Field Tests of Developed ¹⁴ CO ₂ Tagging Systems												
Task 6.0 - Hazard and Environmental Analyses												

Bibliography

• Journal articles:

- Carson, C. G., Lackner, K. S., DeGuzman, M., Paul, D., Murnick, D., 2012, Double flow-though cell for intra-cavity opto-galvanic spectroscopy. Review of Scientific Instruments, *in preparation*
- Ji, Y, Carson, C. G., Stute, M., Lackner, K. S., Hollow fiber membrane microvolume water-gas solution system for sub-surface tag production. Environmental Science & Technology, *in preparation*.
- Patents
 - Carson, C. G., DeGuzman, M., Murnick, D., <u>Linear multi-chamber gas analysis</u> <u>device</u>, in preparation.